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A Method for Automatic Recognition of
Small Mobile Targets in Aerial Images

Stuart Heinrich, Karthik Krish, Wesley Snyder, Siamak Khorram

Abstract—Vision based object recognition is usually done by matching morphological features, which are typically more invariant to lighting
changes and more descriptive than color features. However, for small and/or distant objects extracting reliable shape information can be
difficult or impossible, as sampling effects contribute more to image formation than the shapes of the objects being imaged, as the image gets
smaller. For a given sensor, this limits the effective range that object recognition based on shape features is possible. Objects can also be
recognized based on their color information, and this is more invariant to under sampling. In this paper, we are specifically interested in the
problem of mobile recognition for a vision based guidance system. We show how a very small object previously identified in a survey image
can be recognized by a vision based guidance system based on color information only, thereby allowing recognition to occur at much greater
ranges than would be possible using a detector that used spatial queues.

Index Terms—Automatic target recognition, object recognition, registration, aerial, homography, projectivity, histogram shift.
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1 INTRODUCTION

Object recognition under general conditions remains a
very difficult task in computer vision, and the majority of
progress in this area is still focused on the case where the
objects to be recognized are large enough in the image for
shape features to be utilized in the recognition process. In
most cases, shape-based features such as gradients, curva-
ture, corners, textures, etc are more reliable than color in-
formation which is highly dependent on view and lighting
conditions. However, as sampling is reduced these mor-
phological features become increasingly unreliable, making
them unusable for recognition of objects that project to a
very small area in the image.

Recognition is still possible at such small scales, but color
features (which are more robust to sampling) must be used
instead of morphological ones.

The local histogram is a good compact representation of
the spatially independent color information in an image.

IN most automatic target recognition tasks, targets are
assumed to be close enough to the imaging device that

they occupy a sufficient portion of image space in pixels
for salient features of the target to be identified [Pop94]
[Low04] [Low99] [BMP02], such as contour shape, internal
edges or corners – thus allowing objects to be identified
based on their features.

In this paper, we are concerned with finding a target
in real time for a vision based guidance system. If a
target is approached at constant speed, the size of the
projected image of the target increases as a negative linear
inverse, which is faster than exponential. In other words,
the perceived size of the target from the perspective of
the camera will start out very small and then increase
super-exponentially as it is approached. This is illustrated
geometrically in Fig. 1.
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It is our goal to design a system for recognizing targets
while they are still quite small, thereby allowing adequate
time for a vision based guidance system to adjust its flight
path towards a mobile target, which might have moved
from its location at the time of launch.

Specifically, we propose to do this by making use of a
previous survey image containing the target and its sur-
roundings. Given a bound on the mobile target’s velocity,
this defines a search range from the position in the survey
image, which we utilize to restrict our search in the image
taken from the missile as it approaches.

2 METHOD
From a sufficient elevation, most areas of the ground can
be well approximated by a ground plane. A ground plane
induces a homography between the survey image and the
search image, which is a global function that transfers
visible points in one view to the other under perspective
projection regardless of imaging viewpoints [HZ03] [Bro92].

The first step in our algorithm is to compute an estimate
of the homography (also known as a projectivity [Bro92]
[ZF03]) because it is a quick and reliable way to register
aerial images taken from different viewpoints under per-
spective effects. We do not expect the homography to be
perfect because the background won’t be truly planar, but
it works as a good estimate in most cases.

After finding a homography, the process of transferring
the search image into the view of the survey image is simple
matrix multiplication and interpolation. We expect that the
target can be found in the search image somewhere nearby
to its previously observed location.

Because the target will have moved parallel to the ground
plane (if at all), and the registration accounts for perspective
and scale changes, the target’s image in the registered
search image can be related to the target image in the survey
image by a simple translation and rotation (assuming the
ground is roughly planar).

However, at the small image sizes we are expecting, the
target image is dominated more by rasterization artifacts
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and shadows than features which are actually useful for
classification, so that even if the correct rotation and trans-
lation were known, a direct template match would not work
well (see Fig. 6).

One feature that can still be reliably extracted from a
small target such as this is its histogram, which is conve-
niently invariant to rotation. This motivates the design of
our histogram shift search for locating the target based on
its histogram.

Our algorithm can now be summarized as consisting of
the following four steps:

1) Find candidate correspondences between views.
A set of correspondences are found between salient
points in both views found by comparing the local
brightness in a basis with unified scale and orientation
with a feature matcher that is robust to small errors.

2) Estimate the homography between the two views.
A solution is achieved by non-linear least squares and
RANSAC [FB87], using the epipolar constraint on the
found correspondences.

3) Transfer the search image to the survey view.
After finding the homography, the search image can
be directly transfered (aka, registered) into the same
coordinate system of the survey image.

4) Locate the target by histogram shift search.
The target is located in the registered search image by
searching nearby to the previously known location.
It is identified by a similarly scaled region having
similar histogram.

r
w

c

h
θ

ground plane

Fig. 1. Relative size of target image. A camera with focal point c looking
directly at a target having radius r on the ground plane. If the camera field
of view is 2θ, and the height of the camera from the ground plane is h, then
the visible width of the ground is 2w = 2h tan θ. The relative image size of
the target is r/(h tan θ).

2.1 Finding Correspondences
In order to find correspondences, we first find a set of
salient points in the images and then match them based on
local neighborhoods. Each salient point has an associated
scale and rotation (in the image plane). For our salient
points, we use the set of multi-scale Harris corners [HS88]
[MS04] where the characteristic scale [Low04] is close to the
scale used to compute the local structure tensor of the multi-
scale corners. This prevents corner points from generating
a large number of salient points across scale-space.

For the dominant orientation, we use the peak of the
kernel density estimate of the local gradient orientation in

the characteristic scale as the dominant orientation. This
has a simple implementation achieved by accumulating
the Gaussian weighted local image gradient angles into a
buffer, performing a 1D Gaussian blur on that buffer, and
taking the angle corresponding to the bin with the largest
value.

Because we only use the dominant orientation for finding
a consistent basis to do matching, it is not necessary for
the found angle to agree with the human perception of the
visually dominant orientation; as long as it is consistent for
the corresponding points, it will suffice.

In order to find correspondences from the set of salient
points, we use a grid-based feature matcher that is robust
to small errors in the estimated scale and orientation to
compare each salient point with salient points in the other
image of similar scale. Finally, we use the set of cross-
validated matches as correspondences. Further details on
our approach to finding correspondences can be found in
[KHS+08a], [KHS+08b] and [HKS+08].

2.2 Estimating the Homography

Discovering the homography relating two views is similar
to computing the epipolar geometry, and can also be repre-
sented by an invertible 3× 3 matrix [HZ03]. Denoting this
matrix H, points are transferred according to the following
homogeneous equation,

(x : y : 1) H = (x′ : y′ : w′)T (2.1)

where (x, y) and (x′/w′, y′/w′) are the image space coordi-
nates of the same world point imaged in two views.

Because it has only 8 degrees of freedom [Hec89] [HZ03],
there is a unique solution given 4 corresponding points
which can be computed by back substitution [Hec89].

Given more than 4 correspondences, a least squares solu-
tion can be found using the Direct Linear Transform (DLT),
or iterative methods such as the Gauss-Newton method or
the Levenberg-Marquardt method [HZ03].

Finding correspondences can be error prone, espe-
cially when the images may contain scale changes,
viewpoint/perspective changes, moving features, lighting
changes, specular lighting changes induced by viewpoint
changes, and 3D features that violate the assumption of
background planarity.

Therefore, we do not rely on a simple least squares
estimate based on all correspondences. Instead, we use
RANSAC [FB87] to find the least squared estimate of the
largest random sample consensus, which we improve using
the Gauss-Newton on the resulting inlier set. This method
is similar with that suggested in [HZ03].

2.3 Histogram Shift Search

We present the histogram shift search for finding a target
with known scale and unknown rotation given a rough
guess of the target’s position. This method is also robust
to other common forms of geometric distortion, such as
affine, perspective, and lens distortion, as long as they do
not significantly alter the histogram or overall scale.
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The basic algorithm is simple: given some known scale
and histogram of a target, and a very rough guess of the tar-
get’s location, generate random seed locations distributed
around the initial guess. For each random seed, use the
histogram shift procedure to shift the window center until
the difference between the local window histogram and the
target histogram is locally minimized. Then return the best
overall minimum.

This search method is particularly well suited to recog-
nizing small objects when there are too many degrees of
freedom for geometric distortions to efficiently enumerate,
because the histogram of the image of an object’s projection
is invariant to rotations in the image plane, very robust to
rotations out of the plane, and efficient to calculate for small
regions.

2.3.1 Histogram Shift Procedure
The histogram shift procedure is an iterative method of
gradient descent for shifting an initial guess of window
position towards the position that locally minimizes the
difference between the histogram of the local window and
a reference histogram.

Given a circular window centered at x = (x, y), we define
the triple-band histogram of the circular region in an image
with known radius as H(x). As a similarity metric between
histograms, we use the L1-norm across all bins in all color
bands. If we denote the reference histogram as Href , then
our objective is to find the x that minimizes f in

f(x) = ||H(x)−Href ||1 (2.2)

Because there is no closed form for partial derivatives of
the objective function, we use the backward finite difference
approximation of the total derivative on the image grid as
a means for approaching the minimum. The approximated
partial derivatives are given by

∂f

∂x
≈ f(x, y)− f(x− 1, y) = ∆fx (2.3)

∂f

∂y
≈ f(x, y)− f(x, y − 1) = ∆fy (2.4)

Because these are only first order approximations and the
state space may be highly noisy (see Fig. 7 for an example),
we do not generally trust that the values will be accurate, so
we use only the sign of the approximated derivatives and
take individual pixel steps towards the minimum. This also
reduces computational complexity by avoiding the need for
image interpolation.

Given the position (xj , yj) in iteration j, the algorithm
for updating xj is defined by the following recurrence (and
similarly for yj),

xj+1 =

 xj + 1, ∆fx < 0 and xj−1 6= xj + 1;
xj − 1, ∆fx > 0 and xj−1 6= xj − 1;
xj , o/w.

(2.5)

Because this procedure is not guaranteed to converge,
we impose a cutoff on the number of iterations to prevent
infinite loops. One might also choose to terminate if the
same location is ever revisited.

3 RESULTS

We have created a scene to test our algorithm by taking
an aerial photo of an urban environment and extruding 3D
buildings. We have also added some 3D vegetation that is
simulated by opacity mapped noisy geospheres. For our
target we have juxtaposed an appropriately scaled model
of an M1 Abrams tank. Rendering was done using Mental
Ray 3.5 with physically simulated sky, atmospherics, and
shadows.

We have generated two views which we denote the
survey view and search view (see Fig. 2). The tank’s posi-
tion, orientation, and turret rotation change between views.
The location of the sun changes, as does the camera view
location. The survey view is roughly downward-facing, but
not perfectly.

We found 83 correspondences using our algorithm, 73 of
which fit with the found homography solution with less
than 1 pixel error, 7 of them have approximately 2 pixels
or less of error, 1 of them had about 8 pixel error, 1 had 53
pixel error, and one had 72 pixel error.

Another popular method for finding correspondences is
SIFT (Scale-Invariant Feature Transform) [Low04], and we
compare our method of finding correspondences on this
image pair vs SIFT using a graph of correct correspon-
dences found vs. precision in Fig. 3. Note that we do not
use recall because the salient points found by these two
algorithms differs. The implementation of SIFT that we use
is SIFT++ (freely available online at http://vision.ucla.edu/
∼vedaldi/code/siftpp/siftpp.html ).

Precision is the percent of correct correspondences re-
turned by the algorithm. A correspondence is considered
correct if the difference between the corresponding point
and the projected point using the ground truth homography
is less than 0.02 (in normalized coordinates). The ground
truth homography was computed by taking the least-
squares homography from user-selected correspondences
belonging to the ground plane.

These results indicate that on this test image, SIFT was
not able to surpass 25% precision, making it unusable for
recovering the true homography. In contrast, using our
method we were able to obtain sufficient correspondences
at greater than 90% precision.

From the correspondences, we generated a robust esti-
mate of the homography using Gauss-Newton non-linear
least squares regression and RANSAC [?]. For the RANSAC
parameters, we used 10% of the correspondences for mak-
ing an initial pick, 40% of the correspondences for the min-
imum number in an acceptable solution, a tolerance of 0.02
for inliers (using normalized coordinates), 500 iterations of
RANSAC, and 20 iterations of Gauss-Newton non-linear
least squares regression.

The center and radius of the tank in the survey image
was manually chosen by the operator (Fig. 4). Then the
search image was transferred into the view of the survey
image, as shown in Fig. 5 (it is shown here being overlapped
on top of the survey image to illustrate the correctness of
the homography). Note that the 3D building tops are not
expected to align perfectly because they do not belong to
the ground plane.
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(a) (b)

Fig. 2. Test images from simulated urban environment. (a) Survey image. (b) Search image.

Fig. 3. Correct correspondences vs precision. Number of correct corre-
spondences found by the algorithm vs. precision. Note that the total number
of correspondences found is correct correspondences divided by precision.
This graph shows that SIFT never finds more than 25% correct corre-
spondences, whereas our method (SKS) can generate a usable number
of correspondences all the way up to 90% precision.

(a)

Fig. 4. Selected target. The target to search for is selected manually from
the survey image by an operator, shown by the red circle.

The histogram search method was used to locate the tar-
get in the registered search image, which has approximate
size of 16 × 7 pixels (see Fig. 6). The target found by this
procedure is indicated by the red circle in Fig. 5.

To represent the histograms, we used 256-bin histograms
for each color channel in sRGB space. For the search pa-

rameters, we generated 50 random seeds with a ±40 pixel
error of the expected location. To prevent infinite loops, we
used a maximum cutoff of 15 iterations in the histogram
shift procedure.

(a)

Fig. 5. Search image registered to survey view. Using the found homogra-
phy, the search image is registered to the survey view. Green trails indicate
the paths taken using the histogram shift procedure from each seed point,
and the final result of the search is shown by the red circle.

We found it useful to visualize the function f(x) across
the state space of the registered search image. This is shown
in Fig. 7, which makes it clearly visible that there is one
unique global minimum in the image having the most
similar histogram to the original target.

Finally, the homography is inverted and used to transfer
the found target position back into the original search
image, as shown in Fig. 8.
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(a) (b)

(c) (d)

Fig. 6. Closeup views of tank image. (a) region containing tank in survey
image, after being rotated and resampled. (b) region containing tank in
registered search image. The dimensions of the tank are roughly 16 × 7
pixels. At this small scale, internal features are dominated by shadows and
sampling artifacts, so that even a perfectly matched correlation would not
work well. However, the histograms (shown below) are still similar.

Fig. 7. Histogram difference state space. The relative value of f(x) is
indicated by the height of the displacement at each pixel location in the
registered search image. The surface is colored by the image so that
the correspondence between state space and image is readily apparent.
In this visualization, the function is actually inverted so that the lowest
values appear as the highest peaks. There is clearly one maximal peak
corresponding to the true target location.

4 CONCLUSIONS

For missiles intended for mobile targets, automatic target
detection from visual queues could be used to increase
missile precision. However, because the projected image
size of a target grows faster than exponentially as the target
is approached linearly, being able to do detection on a
slightly smaller target can be used to detect the target from
a greatly larger distance.

A missile’s flight path cannot be corrected after it is too
close, so the minimal size that reliable recognition can be
achieved for this application is critical.

Therefore, as a means for making longer-range detection
possible, we have presented a method for detecting targets
with very small projected images that is fast and robust. We
have demonstrated the ability of our algorithm to function
under the effects of perspective distortion, with 3D clutter,
and under changed lighting conditions. Further, we did not
assume a static target, allowing the tank target to move,
change orientation, and rotate the turret.

In our test example, a target having size of approximately
16 × 7 pixels was successfully located, which according to
Johnson’s Criteria [Joh85], is not quite large enough even

(a)

Fig. 8. Target identified in search image. The result of automatic target
recognition, shown as the red ellipse.

for a human (which are generally far more capable of target
identification than computer visions systems) to be capable
of identifying with 50% confidence.

A limitation of our method is the assumption that the
background is mostly planar in the computation of a ho-
mography. In most cases this assumption is reasonable, but
not always. Because our primary use of the homography
is for choosing an initial guess for the histogram search, it
does not need to be overly accurate.

However, we also use the homography to resample the
search image, so if the assumption of planarity is wildly
inaccurate, then the homography estimation might be so
terrible that the guessed location be completely off, or the
scale of the target in the registered image was drastically
changed, causing the histogram search method to fail. This
might occur, for example, if the target was located on
a steep mountain and both views contained overlapping
parts of the mountain foreground and foothills and/or sky.
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