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Abstract

The ability to merge partial reconstructions into larger reconstructions is an
important step used by many structure from motion systems. Merging is
typically performed in metric space after autocalibration by solving an abso-
lute orientation problem between structure point correspondences. However,
autocalibration is an inherently sensitive procedure that is more reliable if
delayed until the reconstruction is larger and more accurate. Additionally,
the uncertainty of structure points triangulated in each partial reconstruc-
tion may prevent the accurate estimation of the proper orientation from
corresponding structure points. In this paper we show how the orientation
problem can be solved entirely in image space in a manner that is invariant to
the potentially ill-estimated structure points, and is applicable to projective
reconstructions because it does not require autocalibration. This method
may be integrated into larger structure from motion systems for improved
accuracy and reliability.

Keywords: structure from motion, projective reconstruction, merging

1. Introduction

In the structure-from-motion (SfM) problem, the objective is to simul-
taneously compute a reconstruction of 3D structure points and camera pa-
rameters from the motion parallax information encoded in a set of measured
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image correspondences. With uncalibrated cameras, projective reconstruc-
tion is usually the first step, followed by autocalibration to yield a metric
reconstruction [1, p.265].

A projective reconstruction satisfies projection constraints but makes no
assumptions about the camera intrinsic parameters, and is ambiguous up to
a 4 × 4 projective ambiguity. This ambiguity can theoretically be resolved
by autocalibration, which imposes the prior knowledge that real cameras do
not produce skewed or stretched images [2]. However, autocalibration is not
a well-posed problem; in general, there will not exist any 4 × 4 matrix that
causes the camera intrinsic constraints to be satisfied exactly. Most auto-
calibration algorithms are very sensitive to reconstruction quality and will
fail ungracefully when the initial projective reconstruction is not sufficiently
accurate. Thus, autocalibration should be delayed until the projective recon-
struction is as accurate as possible.

A commonly used technique for making a reconstruction that spans an ar-
bitrary number of views is to compute many smaller independent reconstruc-
tions and then merge them together in order to obtain a larger reconstruction
[3–6]. Most previous merging approaches have derived merging constraints
by using correspondences between structure points [3, 5–7]. However, be-
cause Euclidean distance is not preserved under the projective ambiguity,
this has required autocalibration to be performed on each partial reconstruc-
tion prior to merging, which is not only computationally expensive but also
increases the risk of system failure due to the instabilities of autocalibration.

In this chapter, we revisit a linear approach to merging that measures
distance in image space, thereby avoiding the need for premature autocal-
ibration and also reducing the sensitivity to uncertainty in the structure
points (Section 3.1). We show that although this approach usually produces
good results, it can be unstable for certain camera configurations, but using
the method symmetrically overcomes this problem (Section 4). Next, we
propose a maximum likelihood nonlinear improvement of the merging ho-
mography that is completely invariant to the uncertainty in structure points
(Section 5). We show how to robustly deal with outliers using this approach
(Section 6), as well as how to efficiently merge inter-frame correspondences
in order to strengthen the projective constraints for larger reconstructions
while avoiding the systematic accumulation of errors (Section 7).
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2. Merging Homography

The perspective projection of a homogeneous structure point X ∈ P3, as
viewed by a camera with 3× 4 projection matrix P, is a homogeneous image
point x ∈ P2, given by

x ∝ PX. (1)

Let the estimate of the projection matrix for the jth view be denoted by
P̂j in the left reconstruction when it exists, and by P̂′j in the right recon-
struction when it exists. Similarly, the estimate of the ith structure point
in the left reconstruction will be denoted by X̂i, and by X̂′i in the right
reconstruction.

Because both the left and right reconstructions are approximately related
to some ground truth configuration by a 4×4 homography, there will also ex-
ist a 4×4 homography H that approximately relates the right reconstruction
to the left reconstruction,

P̂j ∝ P̂′jH ∀j (2)

X̂i ∝ H−1X̂′i ∀i. (3)

The goal of projective merging is to find the best possible estimate of H.
Once H is known, all projection matrices and structure points in the right
reconstruction can be placed into the same projective reference frame as the
left reconstruction using (2) and (3).

2.1. View Constraints

The homography H has 16 elements but just 15 degrees of freedom (dof)
because it is a homogeneous entity with arbitrary scale; similarly, each 3× 4
projection matrix has 11 dof. Any view j for which P̂j exists in the left

reconstruction and P̂′j exists in the right reconstruction is an overlapping
view, and hence by (2), H is over-determined and can be estimated using
linear least squares from two or more overlapping views. However, we avoid
this approach for the following reasons:

1. Because there can only be one estimate for each projection matrix, any
overlapping views in the right reconstruction will be discarded when
merging the right reconstruction into the left reconstruction (see Fig.
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1). However, P̂j will not be exactly equal to P̂′jH, and there is no
guarantee on how similar they will be. Even a small change in one
element of a projection matrix can result in an arbitrarily large increase
in the reprojection error of a structure point, depending on where that
point is in 3D space. Thus, the results could be very unstable.

2. A least squares approach to merging using constraints from overlap-
ping projection matrices would align them by minimizing the Frobe-
nius norm. However, this is not a meaningful quantification of error
because it does not consider the location of structure points that were
used to estimate the projection matrix. Thus, the transformation that
minimizes the Frobenius norm does not even approximately attempt to
minimize reprojection error and this would magnify the effect of errors
from (1).

3. Because overlapping views are discarded during a merge, it is compu-
tationally wasteful to use more overlapping views than necessary. For
example, the result of merging two triplets with two overlapping views
is only a net increase of one view in the merged reconstruction.
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Figure 1. Example of projective merging with two views of overlap. The left reconstruction
(blue) uses views {1, 2, 3} and the right reconstruction (green) uses views {2, 3, 4}. In
the first step, the right reconstruction is merged into the projective frame of the left
reconstruction using only view constraints. Notice that neither of the projection matrices
perfectly align. The two overlapping views (identified with red border) are discarded,
causing the relative pose between views {2, 3, 4} to be altered in a way that, depending
on the location of structure points, may result in an unbounded increase of reprojection
errors.

If there are no overlapping views then merging is still possible using (3),
if corresponding structure points can somehow be identified. However, in
order for a correspondence to exist between structure points there must have
been a point visible in at least two views of each reconstruction (so that
it could be triangulated), and if there are no overlapping views then this
means that the point must have been imaged in at least four views. This is
undesirable because it becomes exponentially more difficult to find reliable
correspondences across more views.

If there is a single view of overlap, then this leaves 15 − 11 = 4 dof
remaining in the estimation of H; thus, it is always possible to align the
reconstructions so that one overlapping view is exactly equal, and then there
will be no additional increase in reprojection error when this identical view
is discarded during the merge. Furthermore, a correspondence of structure
points requires an image feature to be identified in just three views, as noted
in Laveau [8]. Thus, we consider single-view overlap to be the superior choice.
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When there is a single view of overlap H can be parameterized so as to
enforce (2) exactly [3]. Multiplying (2) by the pseudo-inverse, one obtains
an equation for H,

P̂′j
+
P̂j ∝ H. (4)

However, there is actually a 4-parameter family of solutions defined by
the choice of v in

H(v) = P̂′j
+
P̂j + Ĉ′vT, (5)

where Ĉ′ is the null space (eg, center of projection) of P̂′j. This can be easily

verified by left-multiplying again by P̂′j to yield

P̂′jH(v) = P̂j + P̂′jĈ
′vT, (6)

which is identical to (2) because P̂′jĈ
′ = 0 by definition.

3. Merging with Single-View Overlap

Given a set of corresponding structure points X̂i ↔ X̂′i, the most obvious
way to constrain H(v) would be to use (3) directly by minimizing

∑
i

DE(H(v)X̂i, X̂
′
i)
2, (7)

where DE(a,b) is the inhomogeneous Euclidean distance. However, Eu-
clidean distance is not preserved under the projective ambiguity, and at-
tempting to minimize Euclidean distance in a projective space would be
truly meaningless [3].

As an example, two points might be measured as having a distance of 1
(with some arbitrary units) in the projective space when in fact the actual
distance between those points after metric rectification should be ∞. Thus,
in order to make the distance measurement in (7) meaningful, it would be
necessary to first autocalibrate the right reconstruction (or the left recon-
struction if H−1 is estimated instead).
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A second complication is that the structure points in (7) are homoge-
neous, but the Euclidean distance is measured between inhomogeneous points
which means that (7) will require a nonlinear minimization. However, this is
not a serious complication because a good initialization can be obtained lin-
early by minimizing algebraic (rather than Euclidean) distance, as discussed
in both Laveau [8] and Fitzgibbon and Zisserman [3].

If both left and right reconstructions have been autocalibrated, then H
should theoretically be a similarity transform with 7 dof. The optimal esti-
mation of a similarity transform between two corresponding point sets, called
the absolute orientation problem, can be performed linearly [9–11], and this
is perhaps the most commonly used approach to merging (see Farenzena
et al. [5], Frahm et al. [6], Repko and Pollefeys [7]).

However, because autocalibration is not a very well posed problem that
cannot be solved perfectly (especially for smaller reconstructions), there is
always some projective ambiguity remaining which means that the alignment
between two autocalibrated reconstructions is not truly a similarity transfor-
mation.

Another problem that applies to merging in either projective or metric
spaces is that structure points generally have a large degree of uncertainty,
and this causes the constraints of (3) to be poorly satisfied even for the
best choice of H. The approach of Matei and Meer [11] partially deals with
this problem by taking into account the approximate uncertainty of structure
points in the absolute orientation problem; however, we prefer to overcome
the root of this problem.

3.1. Nister’s Linear Method

A more attractive solution is to measure distance in image space, because
image space is already a metric space. In other words, if x̃j

i is the measured
observation of Xi in view j, then one could instead minimize

∑
i,j

DE(P̂′jH(v)X̂i, x̃
j
i )

2. (8)

Not only does (8) bypass the issue of measuring error in projective spaces,
but for most configurations it is fairly robust to structure points that have a
large degree of uncertainty in their depth, because re-projecting the structure
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point to measure distance on the image plane largely cancels out the uncer-
tainty as long as the views in the right reconstruction are relatively close to
the views in the left reconstruction.

Although there is no linear solution to (8), an algorithm was given in
Nister [4, p. 65] that minimizes a very similar problem linearly. Although it
is not explicitly mentioned there, that problem is

∑
i,j

DA(P̂′jH(v)X̂i, x̂
j
i )

2, (9)

where DA(a,b) is the inhomogeneous algebraic distance, and x̂j
i is the closest

point to x̃j
i that can be found by varying v. The details of this method are

given below.
Let the index of the overlapping view be denoted by o. Then the epipolar

line lji in the jth view that contains the image of the ith point and the epipole
of the oth view is given by

lji = P̂′jP̂
′
o

+
P̂oX̂i × P̂′jĈ

′
o. (10)

This may be verified as follows. To the right of the cross product, Ĉ′o is
the camera center of the oth view in the right reconstruction, and projecting
by P̂′j gives its epipole in the jth view. On the left hand side, we start with

X̂i, the ith point in the left reconstruction. We multiply by P̂o to get the

image of this point in the overlap view, then by P̂′o
+

to back-project this to

a structure point in the right reconstruction, and finally by P̂′j to obtain an
image in the jth view. The cross product of two points gives the line joining
those points, so lji is the desired epipolar line.

The closest point on this epipolar line to the measurement x̃j
i is then

given by

x̂j
i = [lji ]×[x̃j

i ]×Ω∗∞l
j
i , (11)

where Ω∗∞ = diag(1, 1, 0) is the absolute dual conic in a metric frame, and
[x]× is the 3× 3 skew-symmetric cross product matrix of x.

Taking X̂i, the ith point in the left reconstruction, multiplying by H(v)

should transform it into the right reconstruction, and then multiplying by P̂′j

8



gives its image in the jth view, which should be x̂j
i . This is a homogeneous

equivalence constraint that implies a zero cross product,

0 = x̂j
i × P̂′jH(v)X̂i (12)

= [x̂j
i ]×P̂

′
j(P̂

′
o

+
P̂o + Ĉ′ov

T)X̂i (13)

= [x̂j
i ]×P̂

′
jP̂
′
o

+
P̂oX̂i + [x̂j

i ]×P̂
′
jĈ
′
oX̂

T
i v. (14)

Rearranging and left-multiplying by ([x̂j
i ]×P̂

′
jĈ
′
o)

T, a single linear con-
straint on v is obtained,

[x̂j
i ]×P̂

′
jĈ
′
oX̂

T
i v = −[x̂j

i ]×P̂
′
jP̂
′
o

+
P̂oX̂i (15)

X̂T
i v =

−Ĉ′o
T
P̂′j

T
[x̂j

i ]
2
×P̂
′
jP̂
′
o

+
P̂oX̂i∣∣∣∣∣∣[x̂j

i ]×P̂
′
jĈ
′
o

∣∣∣∣∣∣2 . (16)

Thus, each correspondence between a structure point in the left recon-
struction and an image of that point in the right reconstruction in any view
other than the overlapping view provides a linear constraint. A total of at
least four such constraints are needed to constrain H(v).

4. Symmetric Linear Merging

In most cases, Nister’s linear algorithm will work well. However, if the
baselines between all views in the left reconstruction are relatively small,
then the structure points that are chosen from the left reconstruction will
have a large degree of uncertainty in their depth. If in addition, the baselines
between views in the right reconstruction are not all small, then this large
uncertainty in depth may cause the projection of those points into the right
reconstruction to be very inaccurate (see Fig. 2), and this can result in a
failure to properly merge the reconstructions.
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Figure 2. Example of a configuration that may result in unstable merge using Nister’s
linear algorithm. The true location of the five cameras are indicated by Ĉi, i = 1 . . . 5.
The true location of a structure point X is also marked. The left reconstruction consists of
views {1, 2, 3} and the right reconstruction consists of views {3, 4, 5}. Because all views in
the left reconstruction are relatively close together, there is a large degree of uncertainty in
the triangulation of any structure point X, indicated by the dotted red ellipse. As a result,
the projection of this triangulated point into the 5th view may be far from the measured
image point, causing the merging constraint to be bad and preventing the algorithm from
identifying a good merging homography.

In this case, one notices that structure points in the right reconstruction
would have much less uncertainty in their depth (because the baselines are
not all small), and hence these points could be merged into the left recon-
struction and projected onto the image plane where they would correctly
match up with the measured image points.

In practice, a method of keyframe selection (see, for example Repko and
Pollefeys [7], Torr [12], Pollefeys et al. [13], Beder and Steffen [14]) should
be used to ensure that there is some sufficient baseline between each view.
However, the fact remains that between any two reconstructions that one
wishes to merge, one of them will have wider baseline than the other, and
because Nister’s linear algorithm is asymmetric, the structure points that are
used for merging constraints should be chosen from the side that has wider
baseline in order to achieve the greatest accuracy.

It is possible (albeit messy) to derive constraints on v from structure
points in the right reconstruction corresponding to image points in the left
reconstruction, and combining these with the constraints from (16) would
allow v to be estimated linearly from a set of symmetric constraints. How-
ever, this type of symmetry would not actually be a good thing because the
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constraints from one direction always have higher error, so a single symmetric
estimation would only be as good as the constraints of the lesser direction.

Therefore, our solution is to always apply the algorithm in the forward
direction (as described in Section 3.1) as well as the reverse direction, and
take the solution that results in lower reprojection error. In the reverse
direction we use structure points from the right reconstruction corresponding
to image points in the left reconstruction, and solve for H−1 parameterized
by v′,

H−1(v′) = P̂+
j P̂
′
j + Ĉv′

T
, (17)

where Ĉ is the null space of P̂j. Using the overlap view, and substituting
(5) into (17), we can then compute v from v′,

P̂′o
+
P̂o + Ĉ′ov

T =
(
P̂+

o P̂
′
o + Ĉov

′T
)−1

(18)

Ĉ′ov
T =

(
P̂+

o P̂
′
o + Ĉov

′T
)−1
− P̂′o

+
P̂o (19)

vT =
Ĉ′o

T

||Ĉ′o||2

((
P̂+

o P̂
′
o + Ĉov

′T
)−1
− P̂′o

+
P̂o

)
. (20)

This still allows us to merge the right reconstruction into the left recon-
struction even when using constraints from the reverse direction.

5. Structure Invariant Maximum Likelihood Merging

Once the merging homography has been found, structure points can be
retriangulated from all views to obtain a point that is more accurate than
the corresponding points previously existing in the left or right partial re-
constructions. Thus, the ideal merging homography should seek to maximize
the accuracy of the cameras without reference to the previously triangulated
structure points.

Although the symmetric modification improves the reliability of Nister’s
linear method to obtain a better initial estimate of H, it is still less than
ideal; in particular, it attempts to minimize distance between the projection
of a structure point and an artificial point x̂j

i rather than the actual image
measurement x̃j

i , it minimizes an algebraic rather than Euclidean distance,
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and most importantly it is not completely invariant to the uncertainty in
previously triangulated structure points.

Therefore, we seek the homography that would maximize the likelihood
of the overall reconstruction after retriangulating all structure points from
the merged camera matrices using a maximum likelihood method. Assuming
measurement noise is Gaussian, it is well known that maximizing likelihood
is equivalent to minimizing reprojection error [1, p.102], and therefore the
solution is given by

v̂ML = argmin
v

∑
i,j

DE(x̃j
i ,PjX̂MLi)

2, (21)

where Pj(v) are the merged projection matrices as a function of v,

Pj(v) =

{
P̂j, j ∈ L,

P̂′jH(v), j /∈ L,
(22)

and X̂MLi is the maximum likelihood triangulation of the ith structure point
from all available image measurements x̃ji with respect to the merged cam-
eras, Pj.

For points visible in just two views, we compute the maximum likelihood
triangulation in closed form as in Hartley and Sturm [15]; for more than two
views, we compute the maximum likelihood triangulation by nonlinearly min-
imizing the sum of squared reprojection errors using Levenberg-Marquardt
[16] from the homogeneous linear initialization [1, p. 313]. In order to mini-
mize (21) with respect to v, we initialize using our symmetric linear correc-
tion to Nister’s method and then use Levenberg-Marquardt with numerical
differentiation.

It should be noted that even though (21) provides a maximum likelihood
estimate of the merging homography, no estimate of the merging homography
will produce a maximum likelihood reconstruction. Therefore, we always
follow up merging with bundle adjustment [17, 18], the maximum likelihood
nonlinear improvement of a projective reconstruction.

Of course, one could skip (21) and proceed directly to bundle adjustment
after using the linear initialization. However, for a system of n points and m
views projective bundle adjustment has 12m+3n parameters, and in a typical
problem there may be hundreds of thousands of free parameters, making
bundle adjustment not only computationally expensive but very susceptible
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to falling into local minima. Projection matrices in bundle adjustment are
almost always parameterized using an absolute coordinate system, and as
a result a very small error in the merging homography H could necessitate
rather significant changes to half of the views during the subsequent bundle
adjustment. In contrast, H has only 15 dof, so it will be more efficient and
reliable to optimize H as much as possible prior to bundle adjustment.

6. Robustness to Outliers

Because the measurements x̃ji are obtained using a correspondence find-
ing algorithm on images, there are likely to be some mismatches that result
in outliers with very large error. These outliers violate the assumed Gaus-
sian noise model, and it is therefore important to detect and ignore these
measurements in order to make a robust estimate of H using (21).

We use the RANSAC [19] paradigm to handle outliers, specifically MSAC

[20]. From the set of structure point correspondences X̂i ↔ X̂′i, our objective
is to find the largest sample consensus of correspondences that agree upon a
homography which can merge the partial reconstructions while keeping the
reprojection error of all retriangulated structure points Xi in (21) below
some threshold τ .

This is done by picking random subsets from the set of correspondences
and then minimizing (21) (initialized with the symmetric linear method)
using only the selected subset of correspondences. From this estimate of v we
then enlarge the subset to include all inliers and repeat within the RANSAC
framework to find the largest sample consensus. Finally, we iteratively re-
minimize (21) and re-classify inliers until convergence.

In general, the minimum number of correspondences that must be used
in a random sampling is data dependent because the number of constraints
that are provided by each correspondence depends on the number of images
that a structure point is viewed in. However, we do not aim to use minimal
subsets because a greater robustness to noise is achieved by using larger
subsets. When using triplet correspondences to span the overlap view, we
use a subset size of 10 and this results in 10 constraints on v, which we
find provides a good balance between speed of convergence and robustness
to noise.
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7. Merging Correspondences

After merging two partial reconstructions into a larger reconstruction
with more views it may be possible to triangulate structure points using
the additional views for greater accuracy, if the image measurements exist.
For example, if the left reconstruction contains views {1, 2, 3} and the right
reconstruction contains views {3, 4, 5}, and one has good measurements for
x̃j
i , j = 1 . . . 5, then after merging an estimate of the point Xi can be made

using all five views that will be more accurate than the estimate of that point
in the original left or right reconstructions.

It is typical to detect correspondences in a separate module, either using
feature tracking [21–23] or inter-frame matching, that produces as output an
increasing list containing the coordinates of an observed feature point in a
series of views. However, despite attempts to remove outliers [24–26], some
of these measurements will still be erroneous.

In this example, suppose that x̃4
i is a bad measurement. Thus, it is likely

that the point X̂i will exist in the left reconstruction, but X̂′i will not exist in
the right reconstruction. After merging the two reconstructions together and
attempting to triangulate a new point using all the images of this point, this
will also fail and hence the ith structure point will be lost from the merged
reconstruction even though X̂i was formerly a well-triangulated point.

As feature tracks are increased in length, the probability of an outlier
match increases, so it is important to have a method of preventing all the
good points from eventually being thrown out when merging together par-
tial reconstructions. Similar to Thormahlen et al. [27], our solution to this
problem is to associate measurements independently with each partial recon-
struction, and then attempt to merge these correspondences when the partial
reconstructions are merged.

In our implementation we have not used feature tracking to find the initial
correspondences but rather we have used wide-baseline matching of Harris
and Stephens [28] corner points. To compute the initial triplet reconstruc-
tions we search for correspondences of triplets, and to merge them together
we use a separate set of triplet correspondences. After merging the two pro-
jective reconstructions we search for structure points between the left and
right reconstruction that can be merged.

In order to identify potential structure points for merging we project all of
the structure points from the right reconstruction onto the image plane of the
overlapping view. These image points are stored in a uniform grid structure
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[29] that allows all points in a fixed radius to be found rapidly. For each
structure point in the left reconstruction, we search for potential matches
around its projected image point in the overlap view, and for each potential
match we compute the maximum likelihood triangulation from the set of
merged correspondences associated with those points. If the triangulated
point reprojects back to all of the original measurements within some small
threshold, then the merge is adopted.

8. Results

We compare the various merging approaches on synthetic data with con-
trolled levels of noise so that the statistical differences between algorithms
is made clearly apparent. In our synthetic tests, five cameras are generated
on a circle of radius 100 units looking approximately toward the origin (±20
units). The angular separation between successive cameras is uniformly dis-
tributed in the range of 0.1◦ − 10◦, and camera focal length is uniformly
distributed in the range of 600− 800 units.

For scene structure, 100 points are generated on the surface of a cube
of width 100 units that is shifted some distance from the origin in the di-
rection of the average camera principal ray. A top down view of a generic
synthetic configuration is shown in Fig. 3. Correspondences are generated
by projecting the true structure points onto the image plane and adding nor-
mally distributed noise to simulate measurement error in the correspondence
finder.

C1

C2

C3

C4

C5

B

θ1

θ2

θ3

θ4

d

r

Figure 3. Top down view of a synthetic configuration. Cameras centers C1, . . . ,C5 are
located on a circle of radius r with random angular separations of θ1, . . . , θ4. The structure
points are generated on the surface of a cube centered at B, a distance d from the origin.
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From these noisy correspondences we compute a robust estimate of the
trifocal tensor for the first three views and the last three views (so that there
is one view of overlap). We then attempt to merge these two reconstructions
into a single reconstruction covering all five views using: (a) the optimal
absolute orientation method of [10], after autocalibrating both partial recon-
structions using the recent method of [30]; (b) Nister’s forward linear method
(Section 3.1); (c) our symmetric variation on Nister’s method (Section 4); (d)
the proposed Structure Invariant Maximum Likelihood (SIML) method (Sec-
tion 5). We evaluate merging success for any particular trial by using the
mean reprojection error of the merged result prior to bundle adjustment, be-
cause it is well known that the maximum likelihood projective reconstruction
should minimize reprojection error.

In our first experiment we examined sensitivity to noise. This was done
by generating noisy correspondences from 100 random configurations at each
level of noise and then looking at the median of the mean reprojection error
(see Fig. 4). We observe that all methods have zero median error in the ab-
sence of noise, but the absolute orientation method is extremely sensitive and
produces high median errors even under low noise conditions. In contrast,
the image-spaced approaches exhibit reconstruction error that is almost pro-
portional to the measurement error. Our symmetric linear method has lower
median error than Nister’s method, and the proposed SIML improvement
has lower median error still, although these reductions to median error are
relatively marginal.
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Figure 4. Comparison of reconstruction quality as a function of measurement noise. Scene
distance is fixed at 500 units. Errors for the absolute orientation method are shown on
the primary axis and errors for the other methods are shown on the secondary axis. The
plotted curves are the median of 100 trials. All methods have zero median error in the
absence of noise, but the absolute orientation method is extremely sensitive and produces
high median errors even under low noise.

In our second experiment, we fix the noise level at σ = 1 pixels and ex-
amine the merged reconstruction quality as a function of scene distance (
Fig. 5). Curiously, we observe that the reprojection error of the merged re-
construction is not a monotonic function of scene distance. This effect, while
initially perplexing, can be attributed to two conflicting forces. On the one
hand, the absolute (3D) error is increased for more distant reconstructions
because measurement noise (which is added in image space) becomes rela-
tively greater. On the other hand, more distant scenes tend to have lower
reprojection error because the projection of the entire scene bounding box
occupies a smaller portion of the image. Thus, as distance of the scene is in-
creased, the merged reprojection error will gradually increase until it becomes
no better than random guessing, at which point the reprojection error will
gradually reduce and asymptote at some small value, although the absolute
errors continue to increase.
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Figure 5. Comparison of reconstruction quality as a function of scene distance. Measure-
ment noise is fixed at σ = 1 pixels. Interestingly, the reprojection error is not a monotonic
function of scene distance. The plotted curves are the median of 100 trials. For this dis-
tribution of configurations, we see that the median absolute orientation method performs
better than random when the scene distance is within 103, whereas the image-space meth-
ods perform better than random when the scene distance is less than 104, but they only
provide accurate results out to 103. The absolute orientation method does not provide
accurate results for any distance at this level of noise.

In order to approximate this overall downward trend in expected reprojec-
tion error for more distant geometry, we have plotted the median of the mean
reprojection error obtained by randomizing the order of structure points in
the true configuration and measuring the distance to the (incorrect) image
projections after projecting those structure points by the true projection ma-
trices. In other words, this shows the expected reprojection error if structure
points were to be randomly chosen within the scene volume rather than being
precisely triangulated.

We see from the graph that the median performance of the absolute orien-
tation method is better than random only when the scene distance is within
103, whereas the image-space methods perform better than random when
the scene distance is less than 104, but they only provide accurate results out
to 103. Between these methods, the proposed SIML method has the lowest
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median error, although the improvements to median performance are still
only marginal. The absolute orientation method does not provide accurate
results for any distance at this level of noise.

For extremely far distances (105 and beyond in this case), the random
curve has lower error than some of the estimation methods. This is because
at this extreme distance, the prior knowledge of the true scene bounding
box that was assumed when generating the random curve becomes more
informative than the image measurements, because the large relative noise
causes the uncertainty ellipsoid of a triangulated structure point to become
larger than the true scene bounding box.

It should be noted that there is nothing magic about the number 103,
it is simply the point at which the signal to noise ratio becomes too small
for accurate reconstruction, and this is dependent on the specific camera
configuration (particularly the distance between cameras) as well as the cor-
respondence measurement noise.

We compare the Empirical Cumulative Distribution Functions (ECDFs)
of the mean squared reprojection error (MSE) for each method of merging
using from a set of 1000 random configurations with noise fixed at σ = 1
pixels and scene ’distance’ set to zero (i.e., the scene being centered at the
origin) in Fig. 6.
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Figure 6. Comparison of the empirical cumulative distribution of mean squared reprojec-
tion error of the merged reconstructions using various merging methods, based on merging
from 1000 randomly generated configurations.

By looking at the complete performance distribution, we finally see that
the improvements offered by our symmetric and SIML improvements are
significant when it comes to tail performance. This is expected, because
the improvements are primarily designed to increase robustness under condi-
tions of small baseline, but the majority of configurations that we randomly
generate will not have the problem of small baseline.

Specifically, using Nister’s original method the 90th percentile of mean
squared reprojection error was 300 pixels, whereas the 90th percentile was
reduced to 29 pixels after our symmetric modification, and further reduced
down to just 6.5 pixels using the SIML method. Finally, after bundle adjust-
ing the result, the 90th percentile error was reduced to 3.8 pixels, and was
never worse than 6.6 pixels.

Finally, we demonstrate an example of the robust SIML merging method
on some measurements gathered from real data (see Fig. 7). We started with
a series of five sequential snapshots of a desk and then proceeded to find
correspondences by matching corners. We computed two estimates of the
trifocal tensor robustly and then merged them together using the proposed

20



(a) (b) (c)

(d) (e)

Figure 7. Projected structure from a reconstruction of five views that was formed by merg-
ing two triplets that overlap by one view using the proposed approach. The white tracks
show image measurements and the black points are the reprojected structure points. The
merged reconstruction consists of 3,367 structure points with a mean squared reprojection
error of 0.51 pixels (the image width is 1000 pixels).

robust maximum likelihood method. The correspondences were merged as
described in Section 7 and then bundle adjustment was used to nonlinearly
improved the merged result.

In this reconstruction we found a total of 2,661 structure points with
a mean squared reprojection error of 0.55 pixels, all of which were below
the threshold of 2 pixels used within the RANSAC framework. We show a
selection of three views from the merged result of five views in Fig. 7, where
we have drawn the reprojected structure points in comparison to the original
corner points to demonstrate the low reprojection error visually. To reduce
visual clutter, we only draw the reprojections of points that were merged so
that they have an image in all five views. Some views of the reconstructed
point cloud are shown in Fig. 8.
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(a) (b)

Figure 8. Two views of the structure points in the merged desk reconstruction. (a) from a
side perspective, and (b) from a front perspective. The reconstructed cameras are shown
as pyramids.

9. Conclusions

Merging of partial reconstructions requires the computation of the trans-
formation matrix that aligns their respective spaces. This is commonly solved
as an absolute orientation problem in metric space after autocalibration.
However, autocalibration is an inherently sensitive procedure that we feel
is best delayed until the reconstruction becomes larger and more precise in
order to avoid instabilities. Moreover, the absolute orientation approach is
very sensitive to the accuracy of structure points that have been already
triangulated in the partial reconstructions.

By using Nister’s method, errors can be measured in metric image space,
thereby avoiding the need to perform premature autocalibration, which also
has the advantage of canceling out the majority of structure point uncer-
tainty, thereby reducing sensitivity to noise. However, this uncertainty is
never fully canceled out. To solve this problem, we have proposed a way to
apply Nister’s method symmetrically and thereby provide a more reliable ini-
tialization. Most importantly, we have also proposed a maximum likelihood
method that is completely invariant to the uncertainty in structure points,
and shown how this can be used within a RANSAC framework to obtain
truly robust results.

Thus, this new merging method can be used to increase the accuracy and
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reliability of any projective structure from motion system that relies on a
merging operation.
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