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Abstract. This document accompanies the paper: TGV-SLAM A Bayesian
Approach to Real-Time Dense Monocular SLAM. This information is
not necessary to understand the paper. However, for those wishing more
detailed step-by-step explanations, we provide additional details and in-
tuitions behind some of the derivations here.

A Derivations

A.1 Additional Details of Robust Weight Function

In this section we provide additional justification for our choice of robust weight-
inf function. Denoting the photometric residual by J§, we expect inliers to have
a (normal) PDF proportional to

pi(6) = exp(—6?), (1)

and occluded pixels to have photometric errors distributed uniformly throughout
the entire photometric range,

o(9) = {g-a oy @)

Thus, given some mixing parameter m € (0,1) describing the fraction of
outliers, the PDF of the mixture for é € (a,b) is given by

Pmic(8) = mexp(=6%) + (1 —m) (1/(b — a)). (3)

Under this non-normal distribution, the unbiased corrected ML solution is
found using iteratively re-weighted linear least squares to minimize

> I(W(x, Z,p)) — I°(x))*w(é), (4)
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where the weighting function is given by w(8) = p; ! (Pmiz(6)), expanding to

w(8) = /= In (mexp(=8%) + (1 —m) (1/(b — a)))/I4], (5)

Shown in Fig. 1, this weighting scheme plateaus with w(§) = 1 for most
‘middling’ values, and begins decreasing rapidly beyond a crossover point that
occurs around 62 = —In((1 —m)/(b — a)). It also has the undesirable property
that lims_,o w(d) = 0o, which could destabilize the solution by essentially putting
all the weight on a few inlier values that have exceptionally low error. Therefore,
we avoid the instability by instead using the Blake-Zisserman weighting function

[, §A6.8],

1, |0] < T

ws2(0) = {r/|6|, o/w,

where 7 may be determined from the mixing ratio as

7= /—In((1—m)/(b— a)). (7)

This closely approximates the unbiased weight function in (5), while remov-
ing the unstable singularity at 6 = 0 (Fig. 1).

Robust weighting

1.2 T T

0.2 ... Unbiased mixture weight
—— Blake-Zisserman weight

| | | |
0 2 4 6 8

)

Fig. 1. The weighting suggested by a mixture distribution with uniform outliers goes
to infinity for small §. The Blake-Zisserman weight function is a close approximation
that avoids this singularity.
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A.2 TUnderstanding the Total Generalized Variation Prior

Without making particular assumptions about what is being observed by the
camera, the least limiting prior is to assume some level of continunity in the
inverse depth map, u. For example, if one assumes that the differences between
adjacent inverse depth values should be normally distributed (e.g., the map
should be approximately smooth), this implies minimizing the squared gradient
magnitude,

IR )

However, such a regularizer would heavily penalize outliers (e.g., sharp dis-
continuities), causing blending between foreground and background objects, and
eliminating small details in the map.

Much more permissive of discontinuitives is the Total Variation (TV) regu-
larizer,

TV (u) = /Q IV, (9)

which amounts to a prior that the depth should be approximately piecewise
constant. Unfortunately, this causes undesired flattening as well as stair-stepping
where there should be smooth gradients.

To get the smoothness benefits of (8) along with the capacity for discon-
tinuities from (9), but without flattening or stair-stepping, we would prefer a
prior that implicitly assumes that inverse depth map is piecewise planar. If u is
piecewise planar, then Vu should be piecewise constant; thus, a piecewise planar
prior on u may be achieved by applying the TV regularizer onto the components
of an auxiliary field w = [wy, wy]T subject to the constraint Vu = w. Encoding
the latter as a soft constraint with relative weighting o would yield

min{/ a|Vu—w|+/ |wa|+/ wa|} (10)
w 2 2 2

However, the latter two terms are biased by the orientation of the sampling
grid, so that planes having horizontally or vertically aligned slopes would be
given higher likelihood. This bias may be corrected by using the 2-dimensional
infinitesimal strain tensor [§], a differential operator defined as

—_

E(w) (Vw)" + Vw) (11)

2

dw,, 1 dw, ow
om0 ) o
1 (awm 8wy) A, : ( )
5 +

2 Jy ox Oy
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Technically, the infinitessimal strain tensor is a linearized approximation of
the Lagrangian finite strain tensor, which is a good approximation when the
displacement gradients are small — but for our purposes, £ may be thought of as
simply a generalization of the gradient operator to higher dimensions. For this
reason it is sometimes referred to as the symmetrized gradient [2, §3.1]).

Replacing the latter two terms in (10) with £, we obtain the Total General-
ized Variation (TGV) regularizer of order k = 2,

TGV2(u) = min {a/ |Vu—w|dx+/ |€(w)dm}, (13)
weR2 0 0

Like the TV prior, the TGV prior admits discontinuities, but whereas the
TV prior has a tendency to flatten out regions, the TGV prior merely has a
tendency to break smooth surfaces into planar patches — an effect that is often
unnoticed by the human eye, and produces visually smooth and pleasing results.
In addition, it is excellent at aggregating pixels that are part of planar regions,
such as man-made surfaces, or ground surfaces when viewed from high elevation.

A.3 Additional Details of Pose Update Step

The map regularization term drops out of the pose update step, so the problem
reduces to the weighted ML estimation of camera pose given a fixed map by
direct minimization of photometric residual,

Phyr = argming E(Z°, p') (14)
= argmin, Y _ (I'(W(x, 2°,p")) — I°(x))*w(d). (15)
x€ES

For notational simplicity, we drop the ¢ superscripts and denote the template
image I° as T. Ignoring the weighting term, the problem is to solve

argming, Y (I(W(x;p)) — T(x))>. (16)
x€EN

Using the forward-additive approach [I], we want to find the pose parameters
p that define a mapping from pixel coordinates in the reference image (previous
pose) to pixel coordinates in the template image (new pose). Rather than directly
estimating p, we start from an initial estimate and then iteratively solve for the
update vector Ap. We use the & operator to denote application of the update
vector (e.g., p < p @ Ap). Thus, on each iteration our objective is to solve

argminy, Y (I(W(x;p & Ap)) — T(x))”. (17)
xen
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The above is linearized using a first-order Taylor series expansion to give

Y (I(W(x;p) +I(x)Ap - T(x))%, (18)

X

where J(x) is the 1 x 6 Jacobian of I(W (x;p)). By the chain rule,

d oW (x; p)

Jx)=V p

(19)

T
where VI = (%, g—;) is the gradient of I evaluated at W (x;p) and %:p) is

the 2 x 6 Jacobian of W (x;p).
Taking the partial derivative of (18) with respect to Ap and setting equal to
zero (to find the minimum, assuming we are in a local basin of attraction) gives

0

a2p Y (I(W(x;p) +I(x)Ap - T(x))* (20)

X

> IE)TI(W(x;p) +I(x)Ap — T(x)) = 0. (21)

With some rearrangement, we obtain a 6-dimensional linear system to solve

for Ap,

S 30T 4p = 3 I TE(x), (22)

X

where

E(x) =T(x) = I(W(x;p)) (23)

is the photometric error.

Tterative application of (22) leads to a solution via the Gauss-Newton method.

Standard enhancements such as Levenberg-Marquardt or Powell’s dog leg may
also be applied, but we find a simple Gauss-Newton method with line search in
the update direction to be most efficient.

To improve the basin of convergence, we re-solve the problem in a coarse to
fine approach using an image pyramid.

For implementation efficiency, we compute all the residuals and partial deriva-
tives in parallel using CUDA, and perform the final summation on the GPU using
a reduction kernel.
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A.4 Additional Details of Map Update Step

In the depth map update step, we compute the maximum a posteriori inverse
depth map under a fixed estimate of relative pose,

23 ap = argming E(Z,p') (24)
=TGVZ(u) + A\F (u). (25)

This is accomplished using the primal dual method [3], a recently developed
variational method that can efficiently solve non-differentiable saddle point prob-
lems of the form

min max (Kz,y) + F(z) — G(y), (26)

where I is a linear operator, and F and G are arbitrary functions.
The algorithm is based on the resolvent operators for the subgradients of F
and G, denoted by (I + 79F)~! and (I + 0dG) ™! respectively, and defined by

|

(I+70F)"Y(z) = argmin, 5

+ 7F(z). (27)
From this definition, the resolvent operator may be interpreted as finding a
solution (z) that minimizes F(x) in the vicinity (or proximity) of an existing
initial guess T, where 7 controls the weighting on F. For this reason, it is often
referred to as the prozimal mapping and denoted prox’(Z).
Given some initial values for  and y and step sizes o > 0, 7 > 0 the primal-
dual method is given by

Algorithm 1 Generic primal dual method

x < initial estimate

repeat
y < proxg(y + oK)
T <+ proxy(z — 7Ky)
T2 —x

until converged

This method has been proven to converge if 7 and G are both convex func-
tions, and o7 ||K||* < 1, where ||K|| is the operator norm of K [3].

We now show how (25) may be cast in the form of (26) so that it may
be optimized using Algorithm 1. First, recall that the primal form of the TGV
regularizer is given in (13) by

254

260
261
262
263
264
265
266
267
268
269



ECCV-16 submission ID 274 7

TGVZ(u) = min oy [ |Vu—w|dr +ag [ |E(w)|dx . (28)
weR? Q Q

Thus, any arbitrary TGV-regularized problem may be written in discrete
form as

riuurjl{F(u) + a1|Vu — w| + aplE(w)|}, (29)

where F'(u) is the data term.
Let us define the scaled indicator function as

00, o/w.

Lu(z) = {0, |z <k (30)

Taking the Legendre-Fenchel transform of (30), we obtain an optimization
problem that is solved by the scaled L?-norm,

ofa| = max{(p,x) — Lo (p)}- (31)

Thus, we may use (31) to replace the scaled vector norms in (29) to obtain
a saddle point optimization problem in two additional dual variables p, ¢:

min{max{F(u) + (Vu —w,p) = Lo, (p) + (€(w), @) = Tao(@)}}  (32)

u,w - p,q

where p is the dual of Vu — w, and ¢ is the dual of £(w).
By combining the two inner products into one, (32) can be rewritten as

wpma{([7 ] 2] 7))+ @
P) = Zoy(0) ~ Zor )} (34)

Ifwelet Y =U xW and Y = P x @Q, then it becomes clear that our problem
is in the form of (26), where
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Let us now write line 3 of Alg. 1 in terms of the expanded variables. Because
y = (u, w), this results in two independent equations,

D prox%ﬂ1 (p+o(Vu—w)) (38)
q prox%a0 (¢ + o&(w)). (39)

We can further simplify the proximal mappings of the scaled indicator func-
tion. From the definition in (27) we have

=12
o _ . p—Pp
proxg, (7) = argmin, P4 o7, (). (40)

Clearly, the minimum is achieved by avoiding the infinite case in the indicator
function, which means finding ||p|| < «j3. The other term requires we find p
closest to p. Therefore, the solution is simply to project p down to the sphere of
radius a;. Thus,

v (- p Ipl| < o
proxz,, (p) = { B (41)

= max(L [l ay) PO (P): (42)

We must also write line 4 of Alg. 1 using the expanded variables, and again
because © = (u,w) this will result in two more update equations, but first we
need the adjoint of f, which may be written blockwise as

vio
Kt = [_1 gT} . (43)
Substituting in, we obtain
u + proxy(u — 7Vip) (44)
w <+ proxp(w — 7(—p + E7q)). (45)

Because F(z) = A\F(u) is independent of w, the proximal mapping in (45)
reduces to identity,

and hence
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w—w+71(p—ETq). (47)

The proximal mapping in (44) depends on the data fidelity defined in (?7)
evaluated per-pixel and weighted by A, written as

(48)

where we drop the implicit dependence on pose p in the warping function, and
u is the pixel’s inverse depth.

In order to compute the proximal mapping we need a closed form solution for
F(u). To this end we locally approximate I(W (u|x)) by a linearization around

u,

OL(W (ulx))

LW (ulx)) = I(W (alx)) + (u — @) —— - (49)
where
oI(W(ulx)) _ OW (u|x)
— = VI(W(u|x))TT. (50)

Substituting in, and making some notational simplifications, we obtain the
following closed form local approximation:

AI(W (afx)) + (u — @) 270 ()2

F(u) = 5 (51)
o M) + o= D~ T )
Substituting into (27), we obtain
a2 T x’ u—a)dL - T(x))2
proxx () = argmin,, (w-2) + AU + Jou = T(x)) . (53)

2

To find the minimum, we take the derivative and equate it to zero in order

to solve for u. Defining a = % and b=I(x') — ﬂ% — T'(x), this gives

2(u—1u) = TA(2ua® + 2ab)
2 + 2
= (u — @) + 7A(ua® + ab) (55)

Solving for u, we find
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u — TAab

= Tima? (56)

proxr(a)

Finally, taking the results of (38) (39), (42), (44), (47), (56) and sub-

stituting into Algorithm 1 we obtain the primal dual algorithm for regularized
inverse depth estimation:

Algorithm 2 Regularized inverse depth map estimation

1:
2:
3:

4
5
6:
7
8.
9
10:

u < initial estimate

w,p,q < 0

repeat
p ¢ projg,, (p + o(Vu — w))
q < proj,, (¢ + o&(w))
@ + proxp(u — 7Vip)
W w+T(p—ETq)
U—20—u
W= 2 —w

until converged

The first two steps (lines 4-5) improve the dual variables p, ¢, the next two

steps (lines 6-7) improve the primal variables u, w, and the final two steps (lines
8-9) are a forward extrapolation that helps speedup convergence.
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