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Abstract. Vision based Simultaneous Localization and Mapping (SLAM)
algorithms track camera motion while simultaneously estimating scene
geometry from monocular RGB video. Dense SLAM algorithms have re-
cently gained attention as an alternative to complex feature-based SLAM
algorithms because they are simpler to implement, produce detailed
depth maps rather than sparse point clouds, and offer constant runtime
complexity. However, these algorithms often require sparse bootstrap-
ping for initialization, or do not have a well understood theory behind
initial convergence. In this paper, we derive a pure Bayesian objective
for the combined problem, and show how it can be efficiently optimized,
leading to a real-time algorithm for fully dense monocular SLAM that
does not require sparse bootstrapping. In addition, we provide a coherent
and simple theory of initial convergence, and show that the convergence
of prior algorithms are explained by these same principles.

Keywords: Simultaneous Localization and Mapping (SLAM), Visual
Odometry (VO), Pose Graph Optimization (PGO), Total Generalized
Variation (TGV)

1 Introduction

Dense methods for visual odometry have recently gained attention as an at-
tractive alternative to conventional feature-based simultaneous localization and
mapping (SLAM) algorithms. The fundamental premise of these dense algo-
rithms is to directly optimize for the relative camera pose parameters that regis-
ter the current frame to a prior frame (given a known depth map) by minimizing
photometric image differences.

Most dense methods for visual odometry utilize RGB-D cameras to obtain the
depth map directly from a depth sensor [4, 5, 14, 15, 16, 17, 19, 22, 31], although
dense monocular SLAM algorithms such as DTAM [21, 23] and others [27, 28],
estimate a depth map by solving a regularized optimization problem utilizing
poses first estimated by a sparse feature-based SFM method (e.g., PTAM [18],
or directly from the five-point method [25]).

There are many disadvantage of this sparse bootstrapping approach, such as
increased system complexity and overall fragility. In particular, because mapping

SHEINRICH
Typewritten Text
Approved for Public Release; Distribution Unlimited. Case Number 16-0822                   ©2016 The MITRE Corporation. ALL RIGHTS RESERVED

SHEINRICH
Typewritten Text



045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV

#274
ECCV

#274
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quality is inherently sensitive to pose quality, these systems can be sensitive to
the initial poses, which are estimated from limited information, and considering
that future tracking quality is also sensitive to quality of the depth map, this
leads to overall systems that are not self-correcting.

In contrast, a dense system that could be directly initialized on RGB video
and begin simultaneously estimating a depth map while tracking relative pose
would not only be algorithmically simpler (as it would eliminate the need for
feature extraction, matching, estimation of constructs representing epipolar ge-
ometry and robust model fitting), but it would also be inherently self-correcting.
Fairly recently, a semi-dense algorithm [11] of this type was proposed, and was
used as the default method of initialization in their later work, LSD-SLAM [12],
but a theory of how and why this initialization works has not been well under-
stood.

In this paper, we explain the theory behind direct dense initialization, and
present a statistically motivated, simple to implement, and computationally effi-
cient algorithm demonstrating the power of this approach. We begin by showing
how the simultaneous estimation of a depth map and tracking of a moving cam-
era can be elegantly cast as the solution to a Bayesian objective (Section 2). For
the posterior distribution, we use a rigorous Total Generalized Variation (TGV)
prior (Section 2.3), that allows us to estimate fully dense depth maps with very
low noise.

Our objective may be efficiently optimized using well-studied optimization
techniques, resulting in a simple and elegant method for short-term direct SLAM
(Section 3). This is modified for more extended operation with some minor index-
ing changes (Section 4). Our experiments (Section 5) on simulated aerial video
as well as real analog video from an aerial vehicle (Section 5.1) demonstrate that
the proposed algorithms are not only theoretically sound, but robust enough to
produce accurate maps (Section 5.2) and poses (Section 5.3) under real-world
limitations such as low resolution, analog noise and tearing, interlacing artifacts,
heavy digital compression, lack of camera calibration and dynamic zooming.

2 Bayesian Objective Function

In this section we derive a Bayesian objective for maximizing the posterior proba-
bility of a joint solution encompassing camera pose and depth map (scene struc-
ture). We begin by deriving a maximum likelihood objective for the idealized
problem (2.1), then correct the likelihood function to account for occlusions
(Section 2.2) and finally incorporate shape priors to resolve the aperture prob-
lem, leading to our final maximum a posteriori (MAP) objective (Section 2.3).
Our algorithm will directly minimize this objective.

2.1 Maximum Likelihood Objective

Consider a sequence of image frames {I0, I1, . . .} from a monocular camera,
where It ∈ RN×M . Because depth is inversely proportional to disparity, we wish
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to jointly estimate the inverse depth map Z0 ∈ RN×M associated with frame 0,
along with the relative pose (position and orientation) of frame t with respect
to frame 0, denoted pt ∈ R6.

Let Ω ⊂ R2 define the planar image space. Together, Z0 and pt provide
an image-space mapping W : Ω → Ω from I0 to It. For a calibrated pinhole
camera, this mapping may be defined as

W (x, Z0,pt) = fφ−1(R(φ(x/f)− Z0(x)C)), (1)

where x ∈ Ω, f is the focal length, {R,C} are the relative orientation and
position parameterized by pt, and φ : RK → RK+1 is the mapping from Eu-
clidean coordinates into homogeneous coordinates. Note that this equation is
well-defined even for infinite depths, where Z0(x) = 0.

Under the diffuse Lambertian surface reflectance model [20], brightness de-
pends on surface normal and incident light ray only (i.e., unchanged by observer’s
angle of view). Thus, assuming the world is static, viewed through a transparent
medium, and that the imaging sensor has normally distributed intensity errors,
the distribution of intensity differences between matching pixels should also be
normally distributed,

It(W (x, Z0,pt))− I0(x) ∼ N (σ), (2)

and hence the likelihood of {Z0,pt} from a single intensity difference is given by

P (Z0,pt|x, I0, It) =
1

σ
√

2π
exp

(
−(It(W (x, Z0,pt))− I0(x))/(2σ2)

)
. (3)

For notational simplicity, we drop the subscripts and refer to Z0 and pt as
simply Z and p. The Maximum Likelihood (ML) estimates of {Z,p} are given
by

{Ẑ, p̂}ML = argmaxZ,p P (Z,p|x, I0, It) (4)

= argminZ,p
∑
x∈Ω

(It(W (x, Z,p))− I0(x))2. (5)

2.2 Occlusion Outliers

The minimization of (5) is sensitive to outliers of the photometric model as-
sumed in (2), which may exist due to occlussions, moving objects, or other
unmodeled effects. Assuming outliers have photometric errors uniformly dis-
tributed throughout the entire photometric range, the PDF of residuals δ in the
resulting mixture distribution is given by
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pmix(δ) = m exp(−δ2) + (1−m) (1/(b− a)) , (6)

where m ∈ (0, 1) is the fraction of outliers and (a, b) is the photometric range
(e., 0-255). Thus, the effect of outliers may be compensated for by using a robust
weighting function of

w(δ) = p−1i (pmix(δ)) =
√
− ln (m exp(−δ2) + (1−m) (1/(b− a)))/|δ|. (7)

A concern with (7) is that limδ→0 w(δ) = ∞, which could destabilize the
solution by putting too much weight on a few good inliers. A function that
very closely approximates (7), with the exception of removing this unstable
singularity is given in [13, §A6.8] by

wBZ(δ) =

{
1, |δ| < τ

τ/|δ|, o/w,
(8)

where τ is determined from the mixing ratio as τ =
√
− ln((1−m)/(b− a)). In

practice, because the true mixing ratio is unknown, we compute τ from the stan-
dard deviation of photometric inliers. For example, if α is the desired percentile
of inliers to capture (e.g., α = 0.95), then τ = σi

√
Φ−1(α), where Φ is the CDF

of the standard normal function.

2.3 Regularization

Let u ∈ RN×M represent the inverse depth map to be estimated (previously
denoted by Z). Then the objective so far is to minimize

F (u) =
∑
x∈Ω

(It(W (x, u,p))− I0(x))2wBZ(δ). (9)

However, in order to overcome the aperture problem, it is important to incor-
porate some prior PDF for the shape of u, which we denote P (u). If we denote
the negative log of the prior (regularization function) as Ψ(u) = − logP (u), we
obtain the regularized problem

min
u
λF (u) + Ψ(u), (10)

where λ is a relative weight on the data term.
Without making particular assumptions about what is being observed by

the camera, the least limiting prior is to assume some level of continuity in the
inverse depth map u. As demonstrated by other recent methods [28, 29], one
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of the most realistic and effective known priors for depth maps is the Total
Generalized Variation (TGV) [3] of order 2. Geometrically, the TGV of order 2
seeks a piecewise-planar solution, and excels at estimating planar or smoothly
varying surfaces while still admitting discontinuities in the field. In its primal
form, the TGV of order k = 2 is given by

TGV 2
α (u) = min

w∈R2

{
α

∫
Ω

|∇u− w| dx+

∫
Ω

|E(w)| dx
}
. (11)

Substituting (11) into (10), we obtain our joint maximum a posteriori
(MAP) objective,

E(Z,p) = λF (u) + TGV 2
α (u). (12)

3 Optimization

We now discuss the efficient minimization of (12). This is accomplished by alter-
nating minimization of map and pose (Section 3.1). We then discuss initialization
(Section 3.2), and present algorithms for the sub-optimization of pose (Section
3.3) and inverse depth map (Section 3.4).

3.1 Adaptive Alternating Minimization

Alternating Minimization (AM) [6, 7, 10] is a very general framework for nonlin-
ear minimization of functions of two variables that alternates between holding
one variable fixed and optimizing the other. There are many well-known practical
applications, such as Expectation Maximization (EM).

Considering that our objective (12) is essentially a function of two ‘variables’
(an inverse depth map Z, and a relative pose p) and that the estimation of
either depth map given known relative pose or of relative pose given known
depth map are both well-studied problems, AM might seem to be a natural
optimization choice. However, both dense photometric tracking algorithms and
dense-stereo correspondence algorithms are highly sensitive to each other. As
such, initialization would present somewhat of a chicken-and-egg problem that
we believe explains why AM is not a standard approach to the dense SLAM
problem (as it is for sparse SLAM).

Ignoring the initialization problem for now, a limitation of the above AM
method is that we would only be able to estimate map and pose for a single
view pair, whereas in the SLAM problem we wish to estimate a sequence of
continuous camera poses. An adaptive variation of the AM algorithm was studied
in Niesen et al. [24], where it was found to be capable of converging to a running
estimator of the latest parameter values when the parameters to be estimated
are continuous. This adaptive variation may be applied to the SLAM problem
by letting one variable be a fixed reference depth map, and the other variable
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represent the continuously varying camera parameters (Algorithm 1). Of course,
this algorithm will only be applicable so long as the current camera view retains
some observability of the map – a limitation that we later relax with the Leapfrog
algorithm (Section 4).

Algorithm 1 SLAM by Adaptive Alternating Minimization

Ensure: Estimation of {Z0,p0,p1,p2 . . .}
{Z0,p0} ← initialize
t← 1
repeat

pt ← argminpE(Z0,p) . Estimate latest pose
Zt ← argminZ E(Z,pt) . Update map estimate
t← t+ 1 . Next frame

until no more frames

3.2 Initialization

Despite the aforementioned difficulty of initializing AM for a single view pair
(Section 3.1), it turns out that initial convergence of adaptive AM SLAM (Al-
gorithm 1) is much more stable, and we obtain good results by simply starting
from a canonical relative pose and constant valued inverse depth map (Z = 1).

To understand why this initialization works, consider that in the limit as
baseline goes to zero, motion parallax effects disappear and the image warping
may be perfectly described by a planar homography. In Algorithm 1, we start
tracking immediately, while motion parallax effects are negligible and the relative
pose change is nearly identity. This is crucial to the algorithm, because if the
images do not provide enough information to estimate a depth map, then they
also must not provide enough information to disagree with an inaccurate depth
map. As such, we are free to initialize the inverse depth map as a fronto-parallel
plane (e.g., constant valued). Because the scale of the pose updates is only defined
relative to the scale of the depth map, we use the Z = 1 plane without loss of
generality.

Because the initial map is planar, the initial tracking step effectively performs
photometric image registration using a planar homography (parameterized by
camera pose parameters). Even though the scene is not truly a fronto-parallel
plane, this transformation still has sufficient generality to register the images
well at small baseline. Although the 3D position of this first tracked pose will
not be precise in a geometric sense, the resulting epipolar lines in image space
are generally quite good, typically having epipolar line orientation errors of less
than a few degrees. Moreover, at low baseline, the epipolar restricted search is
much less sensitive to epipolar line orientation errors, because the total disparity
(eg, movement along the epipolar line) will only be a few pixels at most. Finally,
because the motion parallax effects are initially negligible, the epipolar search
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need not be exhaustive along the epipolar line – when there is no motion parallax,
correspondences will be described exactly by the plane and pose parameters.
Thus, it is only necessary to search along the direction of the epipolar line within
the current local photometric basin of attraction. This justifies our algorithm
for local nonlinear refinement of depth (Section 3.4) as opposed to using a more
global depth search. Indeed, we find that restricting the epipolar search to the
local basin of attraction is in fact necessary for reliable convergence.

Because the baseline is initially quite small, the initial ‘depth maps’ will
have very low precision. They will show only marginal depth relief, with approx-
imately one discreet depth value for each whole pixel unit of disparity. The use
of regularization can smooth out this estimate, effectively interpolating depth
values inbetween those discrete depth planes, but it will still suffer from an in-
evitable loss of dynamic range that produces a squashed effect. Nonetheless, the
additional depth relief gained via matching tends to precede the required level
of depth relief required for tracking, so that as the baseline increases with each
successfully tracked frame, so does the relief of the depth map increase in the
next mapping iteration.

In our tests, we typically observed that the algorithm converges to a good
joint estimate of depth map and pose within the first second of 30 fps video (Fig.
1), and from there it proceeds to surf the changing photometric minima of the
pose as the camera continues to move, thereby solving the SLAM problem and
the initialization problem simultaneously.

3.3 Pose Update Step

The map regularization term drops out of the pose update step, so the problem
reduces to the weighted ML estimation of camera pose given a fixed map by
direct minimization of photometric residual,

p̂tML = argminpE(Z0,pt) (13)

= argminp

∑
x∈Ω

(It(W (x, Z0,pt))− I0(x))2w(δ). (14)

We solve (14) using the forward-additive approach [1]. To summarize, this
involves first linearizing (14) using a first-order Taylor expansion, then solving
the 6-dimensional linear system for the parameter update that would take the
partial derivatives of the linearized estimate to zero. Thus, if we denote the
Jacobian matrix as J, parameter update as ∆p, and errors as E, we must solve
the following linear system:

∑
x

J(x)TJ(x)∆p =
∑
x

J(x)TE(x). (15)

Iteratively solving (15) leads to a solution of (14) via the Gauss-Newton
method. Standard enhancements such as Levenberg-Marquardt or Powell’s dog
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leg [30] may also be applied, but we find a simple Gauss-Newton method with
line search in the update direction to be most efficient in this case.

To improve the basin of convergence, we re-solve the problem in a coarse to
fine approach using an image pyramid. In order to obtain realtime performance,
we compute all the residuals and partial derivatives in CUDA, and sum up all
the contributions to the final linear system using a custom reduction kernel, so
that the entire computation is performed in parallel on the GPU.

3.4 Map Update Step

The term dependent on pose parameters drops out of the map update step, and
the remaining problem is to estimate the maximum a posteriori inverse depth
map given a fixed estimate of relative pose,

Ẑ0
MAP = argminZ E(Z,pt) (16)

= TGV 2
α (u) + λF (u). (17)

We solve (17) using the primal dual method [9], a recently developed varia-
tional method that can efficiently solve non-differentiable saddle point problems.
Applying the primal dual method to the TGV problem [2, 34] leads to a nonlinear
algorithm for regularized inverse depth map estimation (Algorithm 2).

Algorithm 2 PD algorithm for regularized depth map estimation

1: u← initial estimate
2: w, p, q ← 0
3: repeat
4: p← projα1

(p+ σ(∇u− w))
5: q ← projα0

(q + σE(w))

6: ū← proxτF (u− τ∇†p)
7: w̄ ← w + τ(p− E†q)
8: u← 2ū− u
9: w ← 2w̄ − w

10: until converged

The first two steps of Algorithm 2 (lines 4-5) improve the dual variables p, q,
the next two steps (lines 6-7) improve the primal variables u,w, and the final two
steps (lines 8-9) are a forward extrapolation that helps speedup convergence. In
this case, the proximal operators are defined by

projα1
(p̄) =

p̄

max(1, ||p̄||/α1)
and proxτF (ū) =

ū− τλab
1 + τλa2

, (18)

where a = ∂It

∂u and b = It(x′)− ū∂I
t

∂u − I
0(x). Further details of this derivation

may be found in the supplementary material.
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Parameter Selection A known requirement for convergence is that στ ≤
1/ ||K||2, where in our case it may be verified that ||K||2 < 12. It is often rec-
ommended to use σ = τ = 1/ ||K|| [9], but a key element to the success of our
implementation was to relate the step sizes to physically significant scale factors.

To this end, it may be verified that τ is proportional to the primal step size
in Z, so τ ∝ Z. Furthermore, we know that τ ∝ 1/σ, so it follows that σ ∝ 1/Z.
Finally, from (12) it may be verified that λ ∝ Z/I2, where I is the range of
image intensity. Taking all of these proportionality constraints together implies
that, in order to remain independent of the reconstructed 3D scale or image
intensity scale, one should choose

τ = Z/(A
√

12) and σ = A/(Z
√

12) and λ = (Z/I2)B, (19)

for some constants A and B. In practice, we find using TGV parameter α = 2
with A = 300 and B = 5 result in speedy convergence for all scenes we have
tested.

4 Leapfrog Algorithm

Because the alternating minimization SLAM algorithm (Algorithm 1) only esti-
mates a single depth map corresponding to the first frame of video, it can only
be used to track the camera while there is significant visual overlap with the
original frame. Thus, in order to track reliably for long periods of time with less
restrictions about how the camera moves, it will be necessary to periodically up-
date the tracking reference map. We accomplish this using a leapfrog algorithm
(Algorithm 3). When used with the proposed photometric pose update (Section
3.3) and TGV mapping update (Section 3.4), we refer to this as TGV-SLAM.

The basic idea is to decouple the tracking reference (the depth map that the
relative pose is estimated with respect to) from the mapping reference (the depth
map that is updated). Initially, the tracking and mapping reference are both set
to frame 0. As new frames come in, tracking and mapping is continued until
the map converges to sufficient quality, at which point the mapping reference is
advanced: that is, start mapping a new (more recent) frame without changing
which frame we are tracking from. Thus, as the camera moves over time, new
maps are produced from various incremental positions along the track. When
the tracking baseline becomes too large and tracking becomes unreliable, switch
the tracking reference to the next oldest mapping reference.

Our approach differs from that of LSD-SLAM, where tracking and mapping
reference were always the same, and updating the tracking reference was done
by warping the last estimated depth map into the latest frame and resetting
the tracking baseline to zero [12]. We observe a number of downsides to that
approach: (1) it leads to periodic reductions in tracking accuracy, because after
the baseline is reset there is insufficient baseline to accurately identify relative
pose; (2) map estimation also becomes less constrained after a baseline reset,
resulting in scale drift that needed to be explicitly handled in the Pose Graph
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Algorithm 3 Leapfrog algorithm for Extended SLAM

1: trackInd← 0
2: mapInd← 0
3: curInd← 1
4: queue← empty
5: repeat
6: repeat
7: track relative pose of curInd from trackInd
8: if tracking failed then
9: if queue is empty then return . abort

10: else
11: trackInd← pop the top of queue
12: end if
13: end if
14: until tracking succeeds
15: update map at mapInd using frame curInd
16: if map has converged then
17: push mapInd onto queue
18: mapInd← curInd
19: end if
20: curInd← curInd+ 1
21: until no more frames

Optimizer (PGO); (3) errors in the map may be propagated forward into future
maps, where those errors may be magnified.

By contrast, Algorithm 3 always tracks from the oldest keyframe from which
tracking may be successfully performed, thereby ensuring that the baseline is
wide and tracking precision is not degraded (once initialization is complete).
Because the mapping baseline is never reset to zero, no scale drift is introduced.
As such, there is no explicit need for pose graph optimization. In addition, it
minimizes drift by not creating excessive keyframes. Keyframes are only created
when the camera motion dictates it. Thus, a camera that hovers around the same
area might never create additional keyframes and thereby never accumulate drift.

5 Experiments

5.1 Datasets

In order to independently test algorithm components and empirically assess
tracking and estimated depth map accuracy, it is useful to have test video with
associated ground truth depth maps and camera poses. To this end, we first val-
idate algorithm performance on rendered imagery that simulates an orbit with
central stare over Wilson Canyon, NV. This was generated using USGS Digital
Elevation Models (DEMs) [33] and textures and rendered using osgEarth [26],
using an orbit radius of 1000 meters, a flight speed of about 70 m/s, and camera
frame rate of 30 fps.
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In addition, we validate the algorithm on aerial video acquired from an analog
broadcast by a vehicle orbiting over a factory in Boardman, OR (approx. 2,300
meter radius). For evaluation purposes, truth poses were generated from coupled
GPS/IMU telemetry and precisely interpolated to provide frame-level estimates
of pose. Due to reasons out of our control, the camera was not calibrated for
intrinsic parameters (such as radial distortion or principal point), although a
rough estimate of the sensor focal length is provided in the telemetry, which is
variable over time (due to dynamic zooming).

5.2 Map Convergence

We begin by showing the initial convergence of an inverse depth map on both
the simulated Wilson Canyon dataset and also the real Boardman video, with a
comparison to LSD-SLAM for reference (Fig. 1). On both datasets with TGV-
SLAM, some vague depth information begins to resolve within the first 5 frames;
by frame 10, a blurry depth map is evident; by frame 40, details and disconti-
nuities emerge. By contrast, LSD-SLAM does not begin to depart from random
noise until about frame 20, and the final result is much noiser, as it lacks a rig-
orous method for regularized map estimation. Additional videos demonstrating
convergence may be found in the supplementary material.

Running for a longer duration, TGV-SLAM produces inverse depth maps at
various keyframes (Fig. 2). We note that it is often difficult to discern any visual
difference between the estimated depth maps and the ground truth depth maps.
Although we lack ground truth for the Boardman scene, we note that visual
fidelity of the depth maps appear consistent with the imagery, and even succeed
in tracking through dynamic zoom changes (Fig. 3). A 3D model was produced
for the Boardman scene (Fig. 4) by volumetric fusing of the keyframe depth
maps using a signed distance function (similar to [8]), and then synthesizing a
texture map from the input imagery.

5.3 Pose Accuracy

Relative pose accuracy is assessed by aligning the computed relative poses to
the truth camera centers using the least-squares similarity transform [32]. Our
results on the Wilson dataset (Fig. 5) show that the mean relative error from
TGV-SLAM (0.041861) was 53% less than that of LSD-SLAM (0.07818). For
comparison, we also plotted the error due to pose updates only from a single
truth depth map (Fig. 5). In this case, the mean relative error was only 0.000114
(nearly 400 times less), indicating that the primary source of remaining pose
error in TGV-SLAM is due to biases in the estimated depth maps (despite the
apparently good visual fidelity in Fig. 2).

Relative pose accuracy (as measured from telemetry) for TGV-SLAM on the
Boardman video was significantly better (Fig. 6), until it eventually destabilizes
due to rapid dynamic zooming of the camera. We provide no comparison to
LSD-SLAM because it was not able to converge, likely due to the large scene
scale (2,300 meter distance) and narrow field of view (initially 8.8 degrees).
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Fig. 1. Convergence of inverse depth map as a function of frame number (indicated in
the upper left corners of each map) in 30 fps video. The first frame of each sequence is
shown in top row. Left column: LSD-SLAM on the Wilson scene (for reference); Middle
column: TGV-SLAM on the Wilson scene; Right column: TGV-SLAM on Boardman
scene.
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Fig. 2. Top row: TGV-SLAM keyframe inverse depth maps on Wilson scene. Bottom
row: true depth maps for comparison.

Fig. 3. Selected keyframes and associated inverse depth maps estimated by TGV-SLAM
on the Boardman dataset.

(a) (b)

Fig. 4. Volumetric 3D reconstruction of Boardman scene. (a) without texture; (b) with
texture synthesized from the video.
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Fig. 5. Relative pose errors (from truth) on the Wilson Canyon simulated video.
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Fig. 6. Relative pose errors (from telemetry) on the Boardman video. LSD-SLAM (not
shown) was unable to converge.

6 Conclusions

Dense methods for monocular SLAM present an elegant alternative to traditional
feature-based methods, offering simple implementations and constant time frame
processing. However, they typically resort to rough approximations and heuris-
tics, and a theory behind direct initialization has been lacking. In addition, they
typically require fixed zoom cameras, good calibration, wide field of view sensors
and small scale scenes. In this report we have demonstrated that dense methods
can also be effective on large scale scenes with narrow field of view sensors and
dynamic zoom, even from noisy, poorly calibrated analog video streams. More
importantly, we have elucidated the principles behind the initial convergence
of direct dense initialization, and shown how to derive and implement a simple
SLAM algorithm by directly optimizing a Bayesian objective.
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